## The Ideal Transformer

For the coupled inductor circuit shown below:


From KVL around both loops, we obtain:

$$
V_{1}=j \omega L_{1} I_{1}+j \omega M I_{2} \quad \text { and } \quad V_{2}=j \omega M I_{1}+j \omega L_{2} I_{2}
$$

where $M=k \sqrt{L_{1} L_{2}}$ From Ohm's law, we also have $V_{2}=-Z_{L} I_{2}$. Substituting and rearranging, we find the following relationships between the voltages and currents:

$$
\begin{aligned}
& \frac{V_{1}}{V_{2}}=\frac{1}{k} \sqrt{\frac{L_{1}}{L_{2}}}+\frac{j \omega}{Z_{L}} \frac{\left(1-k^{2}\right)}{k} \sqrt{L_{1} L_{2}} \\
& \frac{I_{1}}{I_{2}}=\frac{-j \omega L_{2}-Z_{L}}{j \omega k \sqrt{L_{1} L_{2}}}
\end{aligned}
$$

Interestingly as $k \rightarrow 1$, the voltage expression becomes:
$\frac{V_{1}}{V_{2}}=\sqrt{\frac{L_{1}}{L_{2}}}=\frac{N_{1}}{N_{2}} \quad$ when $k \rightarrow 1$
where $N_{1}$ and $N_{2}$ are the number of turns in each inductor. Thus, when the inductors are maximally coupled, the ratio of the winding voltages equals the turns ratio, independent of the load impedance $Z_{\mathrm{L}}$.

Also, if $k \rightarrow 1$, the current expression becomes:

$$
\frac{I_{1}}{I_{2}}=\frac{-j \omega L_{2}-Z_{L}}{j \omega \sqrt{L_{1} L_{2}}}
$$

Further, if $\left|j \omega L_{2}\right| \gg Z_{L}$, the current expression becomes:

$$
\frac{I_{1}}{I_{2}}=-\sqrt{\frac{L_{2}}{L_{1}}}=-\frac{N_{2}}{N_{1}} \quad \text { when }\left|j \omega L_{2}\right| \gg Z_{L} \text { and } \quad k \rightarrow 1
$$

In order for coupled inductors to be considered an ideal transformer, both conditions must apply: $\left|j \omega L_{2}\right| \gg Z_{L}$ and $k \rightarrow 1$, which means that the self-inductances of the windings have to be large, and the same magnetic flux must pass through both inductors.

When both conditions are satisfied, the net energy stored by the transformer is zero, indicating a net inductance of zero. We can see this from:

$$
W=\frac{1}{2} L_{1} I_{1}^{2}+\frac{1}{2} L_{2} I_{2}^{2}+k \sqrt{L_{1} L_{2}} I_{1} I_{2}
$$

but, when $\frac{I_{1}}{I_{2}}=-\sqrt{\frac{L_{2}}{L_{1}}}=-\frac{N_{2}}{N_{1}}$, this becomes
$W=\frac{1}{2} L_{1} I_{1}^{2}+\frac{1}{2} L_{2}\left(-\sqrt{\frac{L_{1}}{L_{2}}}\right)^{2} I_{1}^{2}-\sqrt{L_{1} L_{2}} \sqrt{\frac{L_{1}}{L_{2}}} I_{1}^{2} \rightarrow 0$

Finally, it is possible to design a transformer in which the winding voltages follow the ideal transformer ratio, but the currents do not. This occurs when $k=1$ but the load impedance $Z_{\mathrm{L}}$ is not negligible to the secondary inductive reactance. This is often accomplished by adding an air gap to the core. These transformers are used in flyback power supplies, where the "flyback" is a voltage produced by the transformer when the current at the input is switched suddenly.

